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Introduction

The overall purpose of this project 1s to simulate the gravitational waves produced by black holes in binary systems that have
high mass ratios. Using traditional methods 1s too computationally expensive, so instead, we use the Teukolsky equation
(shown below) for the smaller black hole. This project’s aim is to code the Teukolsky equation’ for all spin-weights on a

y 1s the spin-weighted .ﬁ‘cld (ﬁﬁitleés)! We observe v at specific
radial distances and comparé to theoretical work are the horizon and scri+.
ary of the black hole; no waves escape from inside this radius.
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Results

photons gd).'TIlfe following plots show the fields extracted at these

non-rotating Schwarzschild background. In the future, we hope to include a Kerr background for all spin weights. “épe.ciﬁc locatrons compared to theoretical calculations.
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The Teukolsky equation 1s derived from the perturbed Einstein equations using the At E \ 1x108 W I
Newman-Penrose formalism written in Boyer-Linquist coordinates. The variable s 1s - ] ,“‘ A 5 r—
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the spin-weight. The values s=£2 describes the gravitational perturbations, (s==%1) i : ? na |
describes the electromagnetic field, and s=0 describes the scalar field. Ly | R = = o — o o l | | ‘ | ' T
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The variable a 1s the angular momentum over the mass. With a=0, there 1s no rotation, Tails of s = -1 Extracted at Scri+ . Quasinormal Ringdown of s = -2 Extracted at Horizon Tails of s = -2 Extracted at Scri+
for -M<a<M, a#0 , the black hole has rotation and a Kerr background, and |a| >M is il | | R ‘f/mm\@/\ ' | | expected tail behavior, 1-2 —— 3 . expeaeliatietape]-2— |
. . . . . . . . . . : expected tail beh_avior, I_=2 — 3 |\| ' ﬂ,/\'/\(\ expected tail behavic;r, =3 —— [\ expected tail behavior, =3 ——
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The variable a 1s set to zero in the Teukolsky equation, because this simulation is for a non- MO_S: I s a0t | \\
rotating black hole. To simplify, the equation was transformed to tortoise coordinates. The RS : Qq j :
fields described by the equation have been decomposed into spin-weighted spherical harmonic il I B L 1 1 J 1 R . ]
modes, so that the simulation can be performed in 1+1 dimensions. To get the desired results, we . = » . . Jon . > > .- o
have to analyze the gravitational waves from an infinite distance away. To solve this, we p
implemented two layers of hyperboloidal coordinates®. Hyperboloidal coordinates compactify the Conclusion For the spin-weights of 0 and -1 the results are as expected, the quasinormal modes match up with calculated theoretical
computational domain, so that +oo is mapped to finite coordinate radii. data provided by Emanuele Berti* and the tail behaviors match up with the spin weighted power laws defined by Barack® with the notable
| exception for all =2 cases. For 1>2, truncation error increases in later decay. For the spin-weight of -2 the quasinormal modes line up, but
To solve the partial differential equation, nodal discontinuous Galerkin methods™ are implemented. This we don’t see a any clear tail decay due to truncation error even with higher orders. We have yet to resolve this 1ssue and 1n the future
method was chosen over other methods due to the need for high accuracy. The error converges exponentially we hope to reduce the amount of error so that we can eventually see a clear tail. For spin-weights of 1 and 2, we do not get any
with the order of method when evolving smooth fields. After implementing all of these computational and viable data due to an exponential instability. There is not yet a theoretical understanding of this. On the positive side, we can
mathematical methods, the simulation should give us data for the scalar and electromagnetic fields, and at least produce simulations for at least one spin-weight for the scalar field, electromagnetic field, and gravitational
gravitational perturbations. perturbations. In the future, we hope to have a complete generalization of the Teukolsky equation with our code.
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